联华检测中心(广东)有限公司
建筑(构筑物)安全检测鉴定 , 评估 , 排查及技术咨询
光伏承重专业检测公司

屋面光伏电站承重检测鉴定服务内容


钢筋混凝土杯形独立柱基,柱为钢筋混凝土矩形侧向圆孔空心柱,5T“T”形钢筋混凝土吊车梁,折线型钢筋混凝土预制屋架,北跨屋架下弦设有0.5T悬挂吊车两台,1500×6000钢筋混凝土预制大型屋面板,二毡三油一砂卷材防水屋面。

2.施工、使用情况

根据施工资料记载:所有屋架和屋面板均为现场预制。由于当时气温较低、施工工期紧,为缩短工期,尽快提高混凝土强度,采用了氯化钙作防冻剂。当时测得屋面板混凝土强度按龄期推算,28d强度为314.2Kg/cm2,仅达到设计强度400#的78.5%,因此采用添加剂施工未达预期目的。鉴于G725图集大型屋面板混凝土强度为300#,大肋主筋12改为16,即认为屋面板承载力满足使用要求。另有一批屋面板17d混凝土强度只达187.2Kg/cm2,一致认为强度偏低,由施工单位现场做了一块板的荷载试压,加压至130Kg/cm2,符合设计标准荷载,没有继续加压,即吊装使用。屋面没有全部找平,仅在板缝及高差大的地方进行了局部找平。

北跨屋架下弦原设计有2台0.5T的固定悬挂吊车,后因厂方工艺和生产规模的扩大,将原来的2台0.5T悬挂吊车更换成12台0.5T的有轨吊车,轨道安装在屋架下弦杠上,严重*载使用。

3.现场查勘情况

3.1基础。

对柱周围混凝土散水及土层进行外观检查,基础基本稳定,无不均匀沉降及滑移现象。用水准仪对柱进行水准测量,柱基高差小于5mm。室内桁车运行正常。

3.2柱。仅④轴南柱牛腿北侧局部混凝土保护层厚度不足,钢筋外露锈蚀,混凝土局部剥落,其余柱无裂缝和损坏。柱垂直度符合要求。

3.3吊车梁。

均保持完好,桁车运行正常。

3.4屋架。

经检查,北跨所有屋架中约有70%屋架下弦杆产生垂直裂缝,裂缝绝大多数分布于北侧半跨(有悬挂吊车一侧),大多数裂缝尚未贯穿,裂缝宽度在0.10~0.24mm之间,未*过规范允许范围。有50%的屋架在悬挂吊车轨道夹板位置下弦杆侧面混凝土保护层剥落,部分箍筋或主筋外露、锈蚀,混凝土剥落深度在1.5~4.5cm之间。由于*载,12台0.5T的吊车已拆除,但轨道仍存在。详细情况见表1。

3.5屋面板。

北跨共240块大型屋面板,大多数屋面板混凝土浇制时不密实,混凝土严重碳化钢筋锈蚀起皮。经统计,板面出现裂缝的有38块,约占16%,板肋断裂的有11块,约占5%,板面起洞的有12块,约占5%。详细情况见表2。

3.6结构布置和支撑系统。

结构布置和支撑系统符合设计要求,支撑系统杆件基本无损坏。

3.7围护结构。

围护墙体无裂缝、倾斜,承载力能满足使用要求。但墙体局部砖风化,粉刷层老化,局部剥落;木门、木窗失去使用功能;屋面二毡三油防水层老化,局部破损,屋面局部渗漏;地坪严重起鼓、损坏。

4.构件检测

4.1柱(混凝土设计标号为300#)。

按30%比例抽样,用超声回弹综合法推定柱混凝土强度,用TH-1混凝土碳化深度测量仪测量混凝土碳化深度。

4.2屋架(混凝土设计标号为250#)。

按30%比例抽样,用超声回弹综合法推定屋架混凝土强度,用TH-1混凝土碳化深度测量仪测量混凝土碳化深度,用水准仪测量屋架下弦现有起拱量(屋架下弦矢高)。其值见表4。

4.3屋面板(混凝土设计标号为400#)。




屋面板设计厚度为30mm,用游标卡尺实测板面有洞处板实际平均厚度为28mm。由于板面较薄,刚度偏低,板面混凝土不密实,所以无法用超声回弹综合法推定混凝土强度。故采用取芯法在屋面板搁置端较宽板肋处取芯进行试压,芯样为6块,强度见表5。

用TH-1混凝土碳化深度测量仪测量碳化深度,大部分板混凝土已严重碳化,板底面较大碳化深度为13mm,板表面较大碳化深度为22mm。对板肋露筋处(共8处)钢筋锈蚀情况进行检测(用游标卡尺),平均钢筋截面损失32%,现剩余钢筋平均直径为13.6mm。


根据我公司人员现场了解及委托方提供资料,该建筑抗震设防烈度为7度,设计地震分组*三组,建筑安全等级为二级,建筑场地类别为Ⅱ类,基本风压为0.80kN/m2,地面粗糙度为A类。屋面后置太阳能光伏组件折合荷载为0.20kN/㎡。


检测鉴定内容、仪器和依据:


一、内容


根据委托方提供的资料,结合该建筑的具体情况,检测鉴定的主要内容如下:


1.结构布置与轴线尺寸、层高检测;


2.钢屋架构件截面尺寸检测;


3.结构构件连接及损伤缺陷情况检测;


4.根据现场检测结果、委托方提供资料及地区现行相关规范对现结构进行复核验算,根据复核验算结果提出检测鉴定结论和使用建议。


二、检测仪器


1.  激光测距仪2.  游标卡尺3.  钢卷尺4.  其他相关仪器


三、检测鉴定仪器:


1. 《建筑结构检测技术标准》(GB/T 50344-2004);


2. 《钢结构工程施工质量验收规范》(GB 50205-2001);


3. 《建筑结构荷载规范》(GB 50009-2012);


4. 《建筑抗震设计规范》(GB50011-2010);


5. 《钢结构设计规范》(GB50017-2003);


6. 《门式刚架轻型房屋钢结构技术规程》(CECS102:2002);


7. 《工业建筑性鉴定标准》(GB50144-2008);


彩钢瓦屋顶光伏为例,钢材力学性能指标


抗拉强度fu:反映钢材受拉时所能承受的极限应力。




伸长率:试件被拉断时的**变形值与试件原标距之比的百分数,称为伸长率,伸长率代表材料在单向拉伸时的塑性应变的能力。


冷弯性能:冷弯性能由冷弯试验确定。试验时使试件弯成l80°,如试件外表面不出现裂纹和分层,即为合格。冷弯性能合格是鉴定钢材在弯曲状态下的塑性应变能力和钢材质量的综合指标。


韧性:韧性是钢材强度和塑性的综合指标。


由于低温对钢材的脆性破坏有显着影响,在寒冷地区建造的结构不但要求钢材具有常温(20℃)冲击韧性指标,还要求具有负温(0℃、-20℃或-40℃)冲击韧性指标,以*结构具有足够的抗脆性破坏能力。


各种因素对钢材主要性能的影响


1)化学成分


碳直接影响钢材的强度、塑性、韧性和可焊性等。碳含量增加,钢的强度提高,而塑性、韧性和疲劳强度下降,同时恶化钢的可焊性和抗腐蚀性。硫和磷是钢中的有害成分,它们降低钢材的塑性、韧性、可焊性和疲劳强度。在高温时,硫使钢变脆,称之热脆;在低温时,磷使钢变脆,称之冷脆。


2)冶金缺陷   


常见的冶金缺陷有偏析、非金属夹杂、气孔、裂纹及分层等。


3)钢材硬化   


冷加工使钢材产生很大塑性变形,从而提高了钢的屈服点,同时降低了钢的塑性和韧性,这种现象称为冷作硬化(或应变硬化)。在一般钢结构中,不利用硬化所提高的强度,以*结构具有足够的抗脆性破坏能力。另外,应将局部硬化部分用刨边或扩钻予以消除。


4)温度影响   


钢材性能随温度变动而有所变化。总的趋势是温度升高,钢材强度降低,应变增大;反之,温度降低,钢材强度会略有增加,塑性和韧性却会降低而变脆。在250℃左右,钢材的强度略有提高,同时塑性和韧性均下降,材料有转脆的倾向,钢材表面氧化膜呈现蓝色,称为蓝脆现象。钢材应避免在蓝脆温度范围内进行热加工。


当温度在260℃~320℃时,在应力持续不变的情况下,钢材以很缓慢的速度继续变形,此种现象称为徐变现象。当温度从常温开始下降,特别是在负温度范围内时,钢材强度虽有提高,但其塑性和韧性降低,材料逐渐变脆,这种性质称为低温冷脆。


5)应力集中   


构件中有时存在着孔洞、槽口、凹角、截面突然改变以及钢材内部缺陷等。此时,构件中的应力分布将不再保持均匀,而是在某些区域产生局部高峰应力,在另外一些区域则应力降低,形成应力集中现象。承受静力荷载作用的构件在常温下工作时,在计算中可不考虑应力集中的影响。但在负温或动力荷载作用下工作的结构,应力集中的不利影响将十分**,往往是引起脆性破坏的根源,故在设计中应采取措施避免或减小应力集中,并选用质量优良的钢材。


6)反复荷载作用   


在直接的连续反复的动力荷载作用下,钢材的强度将降低,**一次静力荷载作用下的拉伸试验的极限强度,这种现象称为钢材的疲劳。疲劳破坏表现为突然发生的脆性断裂。材料总是有“缺陷”的,在反复荷载作用下,先在其缺陷发生塑性变形和硬化而生成一些*小的裂痕,此后这种微观裂痕逐渐发展成宏观裂纹,试件截面削弱,而在裂纹根部出现应力集中现象,使材料处于三向拉伸应力状态,塑性变形受到限制,当反复荷载达到一定的循环次数时,材料终于破坏,并表现为突然的脆性断裂


展开全文
拨打电话 微信咨询 发送询价